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Abstract. The formalism which has been developed to give general expressions for the
determinants of differential operators is extended to the physically interesting situation where
these operators have a zero mode which has been extracted. In the approach adopted here,
this mode is removed by a novel regularization procedure, which allows remarkably simple
expressions for these determinants to be derived.

1. Introduction

The increasing use of path integrals as a calcnlational tool has led to a corresponding
increase in interest in the evaluation of functional determinants. This is simply because the
evaluation of Gaussian path integrals typically gives such determinants. The first results
were obtained over thirty years ago: Gel'fand and Yaglom {17 derived expressions for
the functional determinants obtained from evaluating path integrals with the simplest type
of quadratic action. In subsequent years the results have become more general and the
formalism more elaborate [2, 3], culminating with the work of Forman [4] who has given
a remarkably simple prescription which can be applied to a rather general operator and
boundary conditions.

However, in many calculations involving Gavssian integrals which are currently carried
out, these results are not directly applicable. The reason is that the Ganssian nature of the
integral is frequently a consequence of expanding about some non-trivial “classical” solution
of the model (e.g. a soliton or instanton). Typically this results in a particular point (in space
or time) being selected, which breaks the translational invariance of the theory, and so gives
rise to a Goldstone mode. There are other possible ways that such a zero mode could come
about, but in all cases the Gaussian approximation breaks down. The remedy is to first
extract this mode as a collective coordinate [5] and to treat only the non-zero modes in the
Gaussian approximation. Therefore, it is not the functional determinant which is required
in these cases—it will in any case be identically zero—but the functional determinant with
the zero mode extracted.

In this paper we present a systematic method to calculate this quantity. The most
obvious way to proceed is to ‘regularize’ the theory in some way, so that the eigenvalue
of the operator under consideration which was previously zers, is now non-zero, The
determinant is now also non-zero and the pseudo-zero eigenvalue can be factored out, the
regularization removed, and a finite result obtained. Previous approaches have been rather
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ad hoc, being performed on a case by case basis as the need arose. For example, it may
be possible in certain cases to modify the form of the operator in such a way that the zero
mode is regularized, but also that the calculation may still be performed [6,7]. In other
cases, it may be possible to move the boundaries to achieve the same end [8,9]. Here we
adopt an approach which applies to very general situations and which, we believe, is the
simplest and most systematic regularization and calculational procedure. This is because
the method is the least intrusive—the operator and the position of the boundaries are left
unchanged—and only the form of the boundary conditions are modified in the regularization
procedure. We use the notation and general approach of Forman to calculate the regularized
functional determinant, since it is ideally suited to this form of regularization, emphasizing
as it does the separation of the boundary conditions from the solutions of a homogeneous
differential equation.

The outline of the paper is as follows. In section 2 we develop our method in one of
the simplest situations, in order to clearly illustrate it. The calculation of the regularized
expression for the formerly zero eigenvalue is derived, for the most general case that will
interest us, in section 3 and the general procedure for finding the functional determinant
with the zero mode extracted is described in section 4. In section 5 we apply the method
to certain specific cases and we conclude in section 6 with some general remarks.

2. A simple example

In this section we explain the method by carrying out an explicit calculation on what is
perhaps the simplest example. Suppose that we wish to calculate the determinant of an
operator of the form

2

L + P(t) tla, bl 2.1}

d?
where P(f) is a known real function. We suppose that the boundary conditions on the
functions on which L operates is u(a} = u(b) = 0. In particnlar, the eigenfunctions of L
have to satisfy these conditions.

We now give Forman’s prescription for calculating det L. A more detailed discussion
is given in section 4, where our approach is explained in greater generality. The recipe bas
two ingredients. .

(i) Write the boundary conditions on L in the form

u(a) w®]_T0
wlie ][] [3] 22

where M and N are 2 x 2 matrices and # = du/dz. These two matrices are not unique; for
the case of our boundary conditions u{a)} = #(b) = 0 we choose them to be

10 00
M=[O 0:‘ N:[I 0]. 23

(i) Now consider a different problem. Let y1(¢) and y2(¢) be two independent solutions
of the homogeneous differential equation Lk = 0. Construct

_ @y
”(‘)‘[m ® yz(r)] @4

and the 2 x 2 matrix Y(b) = H{HH 1 (a).
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Forman then proves that {4}

detL  det(M - NY(b))
det!  det(M-+ NY(®)

We would expect that det L itself is divergent, being a product of an infinite number of
eigenvalues of increasing magnitude. Therefore it is only when it is defined relative to the
determinant of an operator of a similar type {denoted here by f,), that it has any meaning.
In applications to path integrals, ratios of determinants such as the one con. the left-hand side
of (2.5) naturally arise from the normalization of the path integral itself. In general, they
will relate to a simple quantum system or stochastic process, such as the harmonic oscillator -
or Ornstein—Uhlenbeck process. In these cases, ﬁ(t) is independent of ¢ and will not, in
general, have a zero mode.
For the matrices M and N of our simple example,

det(M + NY (b)) = Yi2(b)
_ y1(@)y2 () — y2(edni )
n{@ya{a) — y2(@)nia) -

The denominator of this expression is the Wronskian, which does not vanish since the two
solutions y1(¢) and y;(t) are presumed independent. If we take yi(f) to be a solution for
“which y;(a) = 0, then (2.6} can be simplified to y,(b)/31(a), 5o that, if ¥;(a) = 0 also,

detL _ y1(b)3(6)
deti  y1(BYHi(B)

This simple expression is particularly useful, since it only involves v, $; and their first
derivatives at one of the boundaries. We should stress that results such as these have been
known since the work of Gel'fand and Yaglom [1]—our purpose here is to introduce the
formalism required to describe our approach, in as simple a way as possible.

Now suppose that y(b) = 0 (as well as yj{a) = 0). Then y|(#) is an eigenvalue of L
with zero cigenvalue. This is the situation of interest to us in this paper. To extract this zero
mode, we first regularize the problem by modifying it sc that the operator is unchanged,
but the boundary conditions u{a) = u(b) = 0 become

9@ =0 u@(b) = e (b) (2.8)

(2.5)

- 26)

2.7

where ¢ is some small number. So now y;(f) is no longer an eigenfunction of L with
zero eigenvalue. Let y§5) (¢) be the corresponding eigenfunction (i.e. the one which reduces
to y1(t) when ¢ — 0} and let it have eigenvalue A, To find det L with these boundary
conditions we first note that Y(b) is unchanged, since it does not involve boundary conditions
at all; it only depends on two independent solutions to the homogeneous differential equation
Lh = 0. Modifying the boundary conditions as in (2.8) only changes M and N to

a_|1 O g _ |0 O
M(}_[O 0:1 N()__[l } 2.9)

—€

This gives det(M© + NEY(®)) = Yio(b) — €¥n(b). But since y{a) = y(®) = 0,
Y1:(b) = 0, and so ]

det(M@ + NOY(®)) = —e¥Yn(®)

=%h@

- \ 2.10
(@) 10
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This is the regularized form of the determinant. In the next section we will give a general
method for finding A%). In this simple problem it turns out that, to lowest order,

30 = _e JTO)

2.11
(il @11
where (¥;]y1) is the norm of the zero mode:
b
o) = [ 46320, @)
From (2.10) and (2.11) we have that
‘ det(M© + NEY(p)) {y1ly1)
T H@n® @19

This remarkably simple result is the one which we sought. Note that, apart from the norm,
it is only involves y; at the boundaries. In applications, it will usually be the case that
the norm in (2.13) will cancel with an identical factor coming from the lowest order form
of the Jacobian of the transformation to collective coordinates. Therefore {y;]v) need not
be calculated. Denoting the determinant of L with the zero mode extracted by det’ L and
normalizing by det L, we finally obtain

det’'L  {nily} 51
detl 7@ 516)
The method we have described to find the regularized form of det(M +NY({b)) is hardly
more complicated than finding the unregularized form. The key to achieving this happy
state of affairs was first the decision to modify only the boundary conditions, and second,
the choice of regularized boundary conditions which gave simple forms for M and N,
We shali now show that these choices also allow A'® to be determined in a very simple and
elegant way.

2.14)

3. The regularization of the eigenvalue

While the regularized form of the determinant could be found by use of Forman’s method, a
new technique for calculating the previously vanishing eigenvalue, A, has to be developed.
It is natural to attempt to calculate it perturbatively in €, but it is not at ail obvious that a
general procedure can be set up. Fortunately, it will turn out that choosing the regularized
boundary conditions in the manner illustrated in section 2 on a simple example, enables A/
to be found to lowest order almost without calculation.

Let us begin describing the method where the operator is of the simple form (2.1); we
will generalize to more complicated operators later in this section. There is no need to
specify the boundary conditions at this stage, since, as we will see, a vseful formula for
') can be derived without having to make any choices of boundary conditions. Using the
notation introduced in the last section

Ly® =19y@© (3.1)

where y{9(z) = y1(r) and A© — 0 as ¢ ~ 0. From (3.1)

b b
f de y; Ly](‘) =A@ f dt v, yI(E)

= 2 (yi |31} (3.2)
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to lowest order in e. Integrating by parts gives, again to leading order,

o - DPOn® - hoyP ol
, (r1ly1}
This result is true for operators of the form (2.1) with arbitrary boundary conditions.
As an example, su(p;aose we impose the regularized boundary conditions (2.8). Then
the eigenfunction y;“(z) will satisfy them: yl(‘)(a) =0, yfe)(b) = ejafe)(b). In addition
¥y1(a) = y1(&) = 0, so that to lowest order

L@ _ N
{min)
y1(b}y1(b)
= —f
(rly)
as given in section 2. Note that the ¢ dependence simply comes from the requirement that
) (B) = €31(b), to lowest order.
Analogous results to (3.3} hold for more general operators. For example, suppose that
2

(3.3)

3.4

LiJ.:a,-j@-JrP,-j(r) Li=1,...,r (3.5}
where P(z) is a complex matrix, and suppose that the operator (3.5) has a single zero mode
¥i,1, that is, Z;El Liyin = 0. In matrix notation, the zero mode is the column vector

¥ = 11 - ye)T. Let gi2() be the corresponding eigenfunction of the regularized
problem with eigenvalue A‘?. Then to lowest order
b
f de Y ¥l =29 Oualyin) (3.6)
a 5 ;
where now

&
Ol = T tualyiad = [ 63 buaP 67

i [

Integrating the left-hand side of (3.6) by parts gives the leading order result

4@ _ Sl 038y - 35,0y 0 N Frar s, yh Py — PAbyS) 0
(rily1} ' : Onlyi)

In most cases of interest to us L will be formally self-adjoint, and so the second term in

(3.8) will vanish. The self-adjoint nature of L is expected from its origin as the second

functional derivative of the action in the path integral with respect to the fields:

3.8)

L{t, t); = ——SZ—S— 3.9
T Sur(t)8u; (1) )
The most general operator which we will study in this paper takes the form
dz d
Lyj = [PoO]yy 5 + P10l 3, + [P2(t)]y (3.10)

where Po(r), Pi(t) and P2(t) are complex r x r matrices. We begin by making the
transformation .

!
pij(8) = exp {%f dt (Po)™! (Pl}} Pi(t) = [p(Po) ' P)(p) ™1y — [B(P) "1
i
(3.11)
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so that

Lij = (PP W Lam (Phmj (3.12)
where

d? ’

Ly = 835 + Py (). 3.13)
Now if L is such that I?’o(t) = Py(z), then

detL detl

o= (3.14)

detf!  det?l

where £ is as in (3.13), but with P replaced by P. Therefore the problem has been reduced
to that considered earlier in this section (see (3.3) ef seq). In fact, as regards determining
the ratio of the determinants, Forman gives a general expression for the left-hand side of
(3.14) (see next section), and so there is no need to implement the transformation (3.11).
To find the eigenvalue A€, however, this transformation is useful. It is easy to see that £
has a zero mode if, and only if, L does, and that, in particular, if y;(#) is an eigenfunction
of L;; with zero eigenvalue, then z;(t) = . pi;(#)y;(t) is an eigenfunction of £;; with
zero eigenvalue. The results (3.6)-(3.8) now hold, but with L and y replaced by £ and z,
respectively. As in all of the examples discussed in this section, a judicious choice for the
boundary conditions on the regularized eigenfunction yfe) will yield an explicit regularized
form for A€ with the minimum of calculational effort.

4. General procedure

There are two aspects to our approach to the calculation of det’ L/ detf. One is the
operation of finding A} to leading order, which was explored for the general case in
the last section. The other aspect concerns the application of Forman’s method for the
calculation of det L/ det L, but with the regularized boundary matrices M@ and N© . This
was illustrated with a simple example in section 2; in this section we discuss Forman’s
method in more detail and explain how to apply it to the general operator (3.10). We end
the section with a summary of the general procedure which we have developed in this paper.

We suppose, following Forman [4], that the boundary conditions on (3.10) may be

expressed as
u{a) ub)y| |0
w8 )=o) @0

where M and N are 2r x 2r matrices. This equation is simply the r-dimensional analogue
of (2.2). So for instance, if the boundary conditions are u(a) = u(b) =0, then

I, 0 _fo o '
welh o] wafo ] ”
where |, is the r x r identity matrix.
Now suppose that A;(t); { =1,...,r, is a solution of the homogeneous differential

equation Ej Lijh; = 0, and define the 2r x 2r matrix Y(t), which describes the evolution
of a solution and its first derivative with respect to ¢, by

h() h(a)
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If 41(®), y2(2), ..., Y2 (), are 2r solutions of LA = 0, (4.3) will apply to each solution
separately, that is, H(t) = Y(©)H(a), where

_[w® 1w - w®
A = [:a. © Bo - @z,(:)] ‘ @9
So, in particular, H(b) = Y(b)H(a), or, if the solutions are independent so that detH # 0,
Y(b) = HHYH (a). : 4.5)

"This explains the second construction (labelled (ii)) in section 2.
The formula for the ratio of determinants for operators of the type (3.10) is [4]

detl _ exp(h [0 dr wPy(#)P5' (1)) det(M + NY(8))
detl ~ exp(l [7dr wP()PF (1)) det(M + NV (D))

(4.6)

For this result to be applicable, the matrices P;(¢) and P.(#), and also P,(z) and f’z(t)
need not be equal, however the matrix Pg(#}, multiplying the second derivative, must be
the same for both operators. In most applications L will be normalized by a L which has
a different, and simpler, matrix P,, but is othetwise the same. In these situations PI =P,
the exponential factors in (4.6) cancel out, and the simple formula given by (2.5) holds
fexcept, of course, that M, N and Y(b) are now 2r x 2r, not 2 x 2, matrices). We also note
that, although the formula seems to be asymmetnc with respect to the two pomts a and b,
one could just as well define a matrix Y() by

h(t) - Th®
so that H(a) = Y(a)H(®). Then det(M + NY(#)) = det(N+ MY (a)). Therefore, alternative
formulae to (2.5) and (4.6) exist, with M and N interchanged and Y(b) replaced by Y.

All of the formalism discussed so far in this section also applies to the problem with
regularized boundary conditions—the only difference is that M and N are replaced by M@
and N respectively. We are now in a position to summarize the whole procedure.

(i) Modify the boundary conditions of the original problem by a small amount (¢}, so
that ¢, (¢) is no longer a zero mode. Let y1 (t) be the eigenfunction of the new problem
with an eigenvalue A which tends to zero as ¢ — 0. Express the modified boundary
conditions in the form (4.1) so that they are characterized by two matrices M® and N},

(i) Calculate Y (&) = H(5)H ' (a), where H(t) is given by (4.4).

(iii) Calculate det(M + N©Y(5)).

(iv) Calculate A€ from (3.8).

(v) Hence determine

det(M© -+ N(E)Y(b))
[m
§—0 pACH

(4.8)
(vi) Calcﬁlate the denominator factor det(M <+ N?(b)).

(vii) The ratio of the results of the last two steps gives det’ L/ det £.
We will now study various specific examples where this procedure is applied.

5. Specific examples

The algorithm given at the end of the last section gives a method for determining the
ratio det’ L/ det L. 1In this section we will give explicit results for a few examples with
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commonly met boundary conditions and also discuss one example in some detail to show
how the method we have developed works in practice. We will only give results for the
quantity given by (4.8), since the final result is found by normalizing this by det £, which
can be found from the formulae given in, for example, Forman’s paper [4].

For simplicity we only consider the single component (r = 1) case where the operator
has the form (2.1), for a variety of boundary conditions.

(a) With the boundary conditions Au(a) + Bu(a) =0, Cul(d) 4+ Da(b) =0,

+AC/nfa)y1(b) fAC#D

detL _ | —BC/yi@p®) B, C#O 6
i) | —AD/31(@n ) ifA, D0 :

+BD/yi{a)y:(b) if B, D#0

If all four constants A, B, C, D are non-zero it is easy to see that all four expressions are
equivalent. Similarly, if only three of the constants are non-zero, then the two applicable
expressions are equivalent. If only two constants are non-zero, one involved in the boundary
condition at @ and the other at b, then only one of the above applies. The simple example
given in section 2 falls into this class: the boundary conditions there correspond to A = 1,
B=0,C=1, D=0, and in this case (5.1) reduces to (2.13).

(b) With periodic boundary conditions r{a) = u(b); 4{a) = u(b),

detL (b= 3@

= 5.2
il . (@ detH@) ©-2)
where det H{a@) = w{a)y1(a) — ¥ (a)y:{(a) is the Wronskian.
(¢) With anti-periodic boundary conditions u{(a) = —u(d); t(a) = —i(h),
det L y(8) +y2(a) 53)

{yuiyi} yi{a) detH(a)’

As an example of the application of these results, we use one of the most well known

situations where instantons exist: imaginary time quantum mechanics with a potential

V(x) = 4x% — 1x% [6]. As shown in the appendix, this problem leads one to consider
operators of the form

L= —j—; +1—38%dn%(uim) (5.4)

where dn is an elliptic function [10], & = 8(t — 20)/~2 and g = 2( — m)/(2 — m). The
constants fy and m originate from the integration of the second-order ordinary differential
equation which is satisfied by the instanton. The parameter fy reflects the breaking of the
time-translational invariance of the original theory and m is related to the energy of the
classical particle in the mechanical analogy. The spectral properties of the system can be
studied by imposing periodic boundary conditions on the path integral [11], which dictates
that we use (5.2) to find the required functional determinant. A straightforward calculation,
outlined in the appendix, yields

det' L 22— m)'’? I:K(m) E(m) ] (5.5)
yilyi} m:  |[2-m  2(1—m) |
where K (m)} and E(m) are the complete elliptic integrals of the first and second kind,

respectively.
This result simplifies considerably in the limit where the energy of the particle in the
mechanical energy is zero and consequently the period of the instanton, T, becomes infinite.
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In the appendix it is shown that the agymptotic forms of (5.5), det{M+ N‘?(b)) and {y1]y1),
for T large are, respectively, e” /16, —e” and ;3. Combining all of these results gives

L__L 56

This is in agreement with previous calculations (e.g. equation (29) of [6]). It also
illustrates the extra complication that may occur if the range (@, &) is infinite. In these
cases the numerator (4.8) and the denominator det(M - N?(b)) may separately diverge as
T = (b—a) — oo. One can avoid these divergences in various ways, but the most obvious
way to proceed in these cases is to use T as a regulator and to perform all calculations
with T large, but finite, cancelling out the potential divergences between numerator and
denominator before taking the T — o0 limit.

6. Conclusions

In this paper we have developed a simple and effective way of regularizing operators
which have zero modes. The method allows the functional determinants for these kinds
of operators, with the zero modes extracted, to be calculated. The main advantage of
the method, and the reason for its power, is that it leaves much of the structure of the
unregularized problem intact. This means that much of the formalism originally developed
in this case can be taken over with very little change. The approach which we have adopted
has not emphasized rigor; it would be very interesting to put this work on a rigorous footing,
In particular, we have not proved that the results are independent of the precise method of
regularization adopted. Until this is done, the results obtained using our method, especially
for # > 1, should be treated with caution. On the other hand, we have also kept the number
of examples of the application of the technique to a minimum, preferring instead to give a
clear and explicit discussion of the methodology.

Although we have tried to be quite general, describing most aspects of the formalism
which may arise in practice, there are, inevitably, situations that have not been covered.
One is the case where there is more than one zero mode present—an example is the model
studied in [7]. The prccedure in cases such as this is a simple extension of cur previous
discussion: regularizing parameters ¢, €2, ... are introduced for every broken symmetry,
and hence for every zero mode. This symmetry may be external (spatial or temporal) or
internal (global or local). The boundary conditions are then modified along the directions
of breaking by an amount €,, and the prescription given in section 5 followed.

Our motivation for carrying out this work has been the increasing need to evaluate
determinants of this kind in many areas of the physical sciences. We hope that the ideas
presented here are sufficiently straightforward and easily implemented so that they will find
wide application.
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Appendix

In this appendix we give details of the calculation of the functional determinant of (5.4).
The motivation for studying an operator of this type is that it arises in the investigation of
fluctuations about the instanton in one-dimensional quantum mechanics with the potential
V{x) = 1x? — ;x* [6]. The instanton satisfies the equation —i -+ V'(x) = 0, which may be
integrated once to give %.722 — V(x) = E, where E is a constant. Solutions to this equation
are those of a classical particle of unit mass and energy E moving in the potential —V (x).
Bounded motion is allowed for £ < 0, corresponding to the existence of real instantons.
Let the values of x at which the particle in this mechanical analogy has zero velocity be
denoted by o and 8 (0 < & < B). Then —V () = —V(B) = E which implies o? + g> = 2

and E = —a?B/4. The once integrated equation of motion now reads
dx\ _
(EJ = 0% = o?) (B~ 5% (A1

= f ’ dx L -1 (A2)
=——F=(F—1

p JEI—oDF-D) V2
where #g is the time at which the particle was at x == 8. This may be integrated in terms of
elliptic functions [10]:

xe(t; o, m} = Ban(u|m) (A3)
where u = f(t — 19)/+/2 and m = 1 - («r?/B3). The subscript ‘c’ denotes ‘classical’ and
simply indicates that this is a solution of the classical eguation of motion 85/6x() = 0,
where S[x] = f: dt [%J&z + V(x)] is the action. The physical significance of the integration
constant #, is clear: since the particle can start at any x (o < x < f), the time at which
it reaches B (defined to be f3) is arbitrary. The constant m, on the other hand, is directly
related to the energy of the particle, since £ = —(1 — m)/2(2 — m)%. An alternative to n,
which also specifies the energy of the particle, is the period T defined by

T 1 A dx

22 e S

M de
=g"! —_— Ad
p fﬂ V1—msin®@ A9
PN -
- (-_—2 zm) K{(m) (AS)

where K(m) is the complete elliptic integral of the first kind [10].

As explained in the main part of the text, we are interested in evaluating the expression
(5.2), and therefore need to determine the values of the functions y; and y» at the endpoints a
and b. These two functions are solutions of the homogeneous differential equation Lh =0,
where

2 2
Lt~ = ) e { d +1- 3x§(r; 2o, m)] S —1h. (A6)
x=x;

8x(8)x (") Tae

Using the explicit form for x. given by (A3) we obtain (5.4). But two independent solutions
of Lk = 0 can be found by differentiating x. with respect to #5 and m [12], so we define
1 and y2 by

axc(t; Ip, m)

dtp 4D

yi{t; o, m) =
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oxc(t; tg, m
yalt; to,m) = LT 1) (48)
am
It is a straightforward exercise in elliptic functions to find from (A3) that

oy = 2 i sn(u|m)en(elm) (A9)
¥l i, = ﬁ
. mp? 2 2
w(t: g, m) = w-?-dn(ulm)[cn (ee|m) — sn”(ujm)}. (A1)

One can now check using (AS5) that y;(a) = y1(b) and that y;(@) = y; (b} for any initial
and final times satisfying & —a = T'. Therefore, since y; is a solution of Lk = 0 satisfying
the correct boundary conditions, it is the zero mode for this problem, as expected.

A slightly longer calculation gives

d d E
yalt; to, m) = d—fﬁ-dn(u|m) ~ {umdi g(l(jlm; + ﬁz }sn(ulm)cn(ulm)
Bsn*(u|m)dn(u|m)
2{1 —m)

where £ (u|m) is the elliptic integral of the sacond kznd Usmg the penod:cxty of the elhpnc
functions

(A1)

y2(b) ~ yala) _ { d8  BEm) B ”ﬁz
) Kmm s ~aa—m T 2575
L @-m2(K(m)  E(m) ;
== {Z—m—Z(l-m)} &1

since B2 = 2(2 — m)~'. Here E(m) is the complete elliptic integral of the second kind.
The Wronskian det H{(z) is a constant, and so can be calculated for any convenient 2.
Choosing ¢ = #o, which implies » = 0 and 50 y1(tp) =0,

det H(z) = y2(t0)y1 (20) — y1{to) ¥2(t0)

__(Bm\ (4B
- 2 dm
m
=—— Al3
2= mp (A13)
Substituting (A12) and (A13) iato (5.2), and taking into account the extra minus sign which
comes about because the operator (5.4) is minus the definition of operators as given in the
text, gives (5.5).

Following the discussion of the most natural form for L. given in section 2, we take
it to be the second functional derivative of the action for the harmonic oscillator with the
potential V(x) = £x% Then

2

. d
L=-mtl. (Al4)

Choosing 51() = ¢ and §,(t) = ¢ to be the two independent solutions of the
homogeneous equation Lh =0,

cosh(b —a) sinh(p —a) ]

Yoy = [sinh(b —a) cosh(b —a) (A13)
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Using the same periodic boundary conditions which gave (5.2),
det(M + NY(5)) =2 — Y11(b) — Y2 (6)

=2{(1 —coshT) (AIG)
= —4sinh?([2 — m]Y2K (m)). (A17)
Dividing (5.5) by (A17) gives the required expression for
I det'L
° (AI8)

{rily1) det L
As a check on the results let us look at the limit E = Q0_,ieem—=>1or T = c0. In
this case K (m) ~ 3 1In(l — m), which from (A5) gives m ~ [ — 16e~T. Using E(m) — 1
as m — 1, we have
detr &7

—_——— a T AlQ
o~ 16 = e (A19)

Since from {(A16), detl ~—e” as T — oo,
1 det'L 1

P Gibn) detl 16

The sign is the expected one: the zero mode which has been extracted, yi, has a single
node, which leads us to deduce that L has only one eigenfunction with a negative eigenvalue;
all the other eigenvalues are non-negative. The signs of (A17) and (A19) are not those that
we might naively expect, but these signs have no meaning separately—both the magnitude
and sign of these terms can be changed at will by the replacement M — AM,N — AN,
where A is any real number.

The ratio (A20) agrees with the calculation of [6]. To see this we note thata = 0, 8 —
+/2 as m — 1, hence the instanton becomes

(A20)

xelt; fo, m = 1) = /2 sech(t — 1) (A21)
= yi(t; o, m = 1) = v/2sech(t — o) tanh(z — fo) (A22)
= I (niy) =3 (A23)

Combining (A20) and {A23) gives (5.6), as required.
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