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Abstract The formalism which has been developed to give general expressions for the 
determinants of differential operators is extended to the physically inteceating situation where 
these opentors have a zero mode which has been extncted. In the approach adopted here, 
this mode is removed by a novel regularization procedure, which allows remarkably simple 
expressions for these determinants to be derived. 

1. Introduction 

The increasing  use of path integrals as a calculational tool has led to a corresponding 
increase in interest in the evaluation of functional determinants. This is simply because the 
evaluation of Gaussian path integrals typically gives such determinants. The first results 
were obtained over thirty years ago: Gel’fand and Yaglom [I] derived expressions for 
the functional determinants obtained from evaluating path integrals with the simplest type 
of quadratic action. In subsequent years the results have become more general and the 
formalism more elaborate [Z, 31, culminating with the work of Forman [4] who has given 
a remarkably simple prescription which can be applied to a rather general operator and 
boundary conditions. 

However, in many calculations involving Gaussian integrals which are currently carried 
out, these results are not directly applicable. The reason is that the Gaussian nature of the 
integral is frequently a consequence of expanding about some non-trivial ‘classical‘ solution 
of the model (e.g. a soliton or instanton). Typically this results in a particular point (in space 
or time) being selected, which breaks the translational invariance of the theory, and so gives 
rise to a Goldstone mode. There are other possible ways that such a zero mode could come 
about, but in all cases the Gaussian approximation breaks down. The remedy is to first 
extract this mode as a collective coordinate [5]  and to treat only the non-zero modes in the 
Gaussian approximation. Therefore, it is not the functional determinant which is required 
in these cases-it will in any case be identically zero-hut the functional determinant with 
the zero mode extracted. 

In this paper we present a systematic method to calculate this quantity. The most 
obvious way to proceed is to ‘regularize’ the theory in some way, so that the eigenvalue 
of the operator under consideration which was previously zero, is now non-zero. The 
determinant is now also non-zero and the pseudo-zero eigenvalue can be factored out, the 
regularization removed, and a finite result obtained. Previous approaches have been rather 
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ad hoc, being performed on a case by case basis as the need arose. For example, it may 
be possible in certain cases to modify the form of the operator in such a way that the zero 
mode is regularized, but also that the calculation may still be performed [6,7]. In other 
cases, it may be possible to move the boundaries to achieve the same end [8,9]. Here we 
adopt an approach which applies to very general situations and which, we believe, is the 
simplest and most systematic regularization and calculational procedure. This is because 
the method is the least intrusive-the operator and the position of the boundaries are left 
unchanged-and only the form of the boundary conditions are modified in the regularization 
procedure. We use the notation and general approach of Forman to calculate the regularized 
functional deteminanf since it is ideally suited to this form of regularization, emphasizing 
as it does the separation of the boundary conditions from the solutions of a homogeneous 
differential equation. 

The outline of the paper is as follows. In section 2 we develop our method in one of 
the simplest situations, in order to clearly illustrate it. The calculation of the regularized 
expression for the formerly zero eigenvalue is derived, for the most general case that will 
interest us, in section 3 and the general procedure for finding the functional determinant 
with the zero mode extracted is described in section 4. In section 5 we apply the method 
to certain specific cases and we conclude in section 6 with some general remarks. 

A J McKane and M B Tarlie 

2. A simple example 

In this section we explain the method by carrying out an explicit calculation on what is 
perhaps the simplest example. Suppose that we wish to calculate the determinant of an 
operator of the form 

(2.1) 

where P ( t )  is a known real function. We suppose that the boundary conditions on the 
functions on which L operates is U@) = u(b) = 0. In particular, the eigenfunctions of L 
have to satisfy these conditions. 

We now give Forman's prescription for calculating det L. A more detailed discussion 
is given in section 4, where our approach is explained in greater generality. The recipe has 
two ingredients. 

dZ 
L = - + P( t )  f E [a. bl dtZ 

(i) Write the boundary conditions on L in the form 

where M and N are 2 x 2 matrices and U = du/dt. These two matrices are not unique; for 
the case of our boundary conditions u(a)  = a(b) = 0 we choose them to be 

(ii) Now consider a different problem. Let yl(t) and y t ( f )  be two independent solutions 
of the homogeneous differential equation Lh = 0. Construct 

(2.4) 

and the 2 x 2 matrix Y(b)  H(b)H-'(a). 
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Forman then proves that [4] 

det L det(M + NY(b)) 
det i 
-- - 

det(M + N?(b)) ' 
(2.5) 

We would expect that detL itself is divergent, being a product of an infinite number of 
eigenvalues of increasing magnitude. Therefore it is only whehit is defined relative to the 
determinant of an operator of a similar type (denoted here by L),  that it has any meaning. 
In applications to path integrals, ratios of determinants such as the one on the left-hand side 
of (2.5) naturally arise from the normalization of the path integral itself. In general, they 
will relate to a simple quantum system or stochastic process, such as the harmonic oscillator 
or Ornstein-Uhlenbeck process. In these cases, &) is independent of E and will not, in 
general, have a zero mode. 

For the matrices M and N of OUT simple example, 

det(M + MY(b)) = Y d b )  

. ' (2.6) 

The denominator of this expression is the Wronskian, which does not vanish since the two 
solutions y1 (t) and y&) are presumed independent. If we take y l ( t )  to be a solution for 
which y, (a) = 0, then (2.6) can be simplified to y~ (b)/yl (a), so that, if 91 (a) = 0 also, 

(2.7) 

This simple expression is particularly useful, since it only involves y ~ ,  $1 and their first 
derivatives at one of the boundaries. We should stress that results such as these have been 
known since the work of Gel'fand and Yaglom [l]--our purpose here is to introduce the 
formalism required to describe our approach, in as simple a way as possible. 

Now suppose that yl(b)  = 0 (as well as yl(a)  = 0). Then y l ( t )  is an eigenvalue of L 
with zero eigenvalue. This is the situation of interest to us in this paper. To extract this zero 
mode, we first regularize the problem by modifying it so that the operator is unchanged, 
but the boundary conditions u(a) = u(b) = 0 become 

u'"(a) = 0 u(f ) (b)  = Eu(f)(b) (2.8) 

where E is some small number. So now y l ( t )  is no longer an eigenfunction of L with 
zero eigenvalue. Let y j" ( t )  be the corresponding eigenfunction (i.e. the one which reduces 
to yI(t) when E --f 0) and let it have eigenvalue A@). To find detL with these boundary 
conditions we first note that Y ( b )  is unchanged, since it does not involve boundary conditions 
at all; it only depends on two independent solutions to the homogeneous differential equation 
Lh = 0. Modifying the boundary conditions as in (2.8) only changes M and N to 

This gives det(M(0 + N@)Y(b)) = Ylz(b) - eYZz(6). But since YI(Q) = yl(b) = 0, 
YiZ(b) 0, and SO 

det(M(') + N("Y(b)) = -EYZZ(b) 

(2.10) 
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This is the regularized form of the determinant. In the next section we will give a general 
method for finding 161. In this simple problem it tums out that, to lowest order, 

where (y1 Iyl)  is the norm of the zero mode: 

From (2.10) and (2.11) we have that 

det(M(') + N(flV(b)) - (y1 Iyl) - 
A(d Y i  @)Yi (b) ' 

lim 
f-0 

(2.11) 

(2.12) 

(2.13) 

This remarkably simple result is the one which we sought. Note that, apart from the norm, 
it is only involves y1 at the boundaries. In applications, it will usually be the case that 
the norm in (2.13) will cancel with an identical factor coming from the lowest order form 
of the Jacobian of the transformation to collective coordinates. Therefore (ylly1) need not 
be calculated. Denoting the determinant of L with the zero mode extracted by det' L and 
normalizing by det i, we finally obtain 

(2.14) 

The method we have described to find the regularized fonn of det(M+NY(b)) is hardly 
more complicated than finding the unregularized form. The key to achieving this happy 
state of affairs was first the decision to modify only the boundary conditions, and second, 
the choice of regularized boundary conditions which gave simple forms for MO) and N(€). 
We shall now show that these choices also allow A(f) to be determined in a very simple and 
elegant way. 

3. The regularization of the eigenvalue 

While the regularized form of the determinant could be found by use of Forman's method, a 
new technique for calculating the previously vanishing eigenvalue, A(€), has to be developed. 
It is natural to attempt to calculate it perturbatively in E ,  but it is not at all obvious that a 
general procedure can be set up. Fortunately, it will turn out that choosing the regularized 
boundary conditions in the manner illustrated in section 2 on a simple example, enables A(() 
to be found to lowest order almost without calculation. 

Let us begin describing the method where the operator is of the simple form (2.1); we 
will generalize to more complicated operators later in this section. There is no need to 
specify the boundary conditions at this stage, since, as we will see, a useful formula for 
A(') can be derived without having to make any choices of boundary conditions. Using the 
notation introduced in the last section 

where y f ' ( t )  -+ yI(r) and A(f) + 0 as E -+ 0. From (3.1) 
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to lowest orher in E .  Integrating by parts gives, again to leading order, 

(3.3) 

This result is true for operators of the form (2.1) with arbitraq boundary conditions. 
As an example, su ose we impose the reguIarized boundary conditions (2.8). Then 

yl(a) =.yi(b) = 0, so that to lowest order 

- ~ r f ' ( t ) y l ~ )  - Yl( t )~ f ) ( t ) t  A -  
(YllYll 

the eigenfunction y1( PP ( t )  will ' samfy ' them: $'(a) = 0, yf'(b) = Eyf)(b). In addition 

(3.4) 

as given in section 2. Note that the t dependence simply comes from the requirement that 
yI('(b) = EyI(b), to lowest order. 

Analogous results to (3.3) hold for more general operators. For example, suppose that 

(35) 

where P ( t )   is a complex matrix, and suppose that the operator (3.5) has a single zero mode 
yi.1, that is, L;,yj,i = 0. In matrix notation, the zero mode is the column vector 
yi = (~1.1. . . . , Let yf'(t) be the corresponding eigenfunction of the regularized 
problem with eigenvalue A(f). Then to lowest order 

d2 
Lij = 6 ; j -  + Pij@) dtz 

i, j = 1, . . . , r 

where now 

(3.6) 

(3.7) 

Integrating the left-hand side of (3.6) by parts gives the leading order result 

In most cases of interest to us L will be formally self-adjoint, and so the second term in 
(3.8) will vanish. The self-adjoint nature of L is expected from its origin as the second 
functional derivative of the action in the path integral with respect to the fields: 

(3.9) 

The most general operator which we will study in this paper takes the form 

(3.10) 

We begin by making the 

d2 d 
Lij P d t ) I i j ~  + P~(t)li,z + [ P ~ ( t ) l i j  

where Po@) ,  P l ( t )  and P z ( t )  are complex ~r x r matrices. 
transformation 

P i j O )  = exp { 1 dt P O ) - ' ( P I ) J  
1 

pij(t) = [ P P O ) - ' ( P Z ) ( P ) - ~ I ~ ~  - [P(P)-'Iij 
i j  

(3.11) 
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so that 
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Lij = (Po)ix(p-')xiLim(p)mi 

where 
d2 
df?- 

Lij = 8,- + Pi j ( t ) .  

Now if i is such that bo@) = Po@), then 
detL detL 
d e t i  detL 
-- -- 

(3.12) 

(3.13) 

(3.14) 

where 2 is as in (3.13), but with P replaced by p. Therefore the problem has been reduced 
to that considered earlier in this section (see (3.5) er seq). In fact, as regards determining 
the ratio of the determinants, Forman gives a general expression for the left-hand side of 
(3.14) (see next section), and so there is no need to implement the transformation (3.11). 
To find the eigenvalue however, this transformation is useful. It is easy to see that L 
has a zero mode if, and only if, L does, and that, in particular, if y ; ( t )  is an eigenfunction 
of Lij with zero eigenvalue, then z i ( f )  = xjpij(f)yj(t) is an eigenfunction of Lii with 
zero eigenvalue. The results (3.6t(3.8) now hold, but with L and y replaced by L and z ,  
respectively. As in all of the examples discussed in this section, a judicious choice for the 
boundary conditions on the regularized eigenfunction yy) will yield an explicit regularized 
form for with the minimum of calculational effort. 

4. General procedure 

There are two aspects to our approach to the calculation of det! L lde t i .  One is the 
operation of finding to leading order, which was explored for the general case in 
the last section. The other aspect concerns the application of Forman's method for the 
calculation of det L /de t i ,  but with the regularized boundary matrices MC6) and N(€). This 
was illustrated with a simple example in section 2; in this section we discuss Forman's 
method in more detail and explain how to apply it to the general operator (3.10). We end 
the section with a summary of the general procedure which we have developed in this paper. 

We suppose, following Forman 141, that the boundary conditions' on (3.10) may be 
expressed as 

where M and N are 2r x 2r matrices. This equation is simply the r-dimensional analogue 
of (2.2). So for instance, if the boundary conditions are u(a)  = ~ ( b )  = 0, then 

where I, is the r x r identity matrix. 
Now suppose that hi@);  i =~ 1, . . . , r ,  is a solution of the homogeneous differential 

equation cj Lijhj = 0, and define the 2r x 2r matrix Y(f), which describes the evolution 
of a solution and its first derivative with respect to f ,  by 

(4.3) 
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If y~( r ) ,  y2(t), . . . , y2,(t), are 2r solutions of Lh = 0, (4.3) will apply to each solution 
separately, that is, H(t) = Y(r)H(u), where 

(4.4) 

So, in particular, H(b) = Y(b)H(a), or, if the solutions are independent so that det H # 0, 

Y(b) = H(b)H-'(a). (4.5) 

This explains the second construction (labelled (ii)) in section 2. 
The formula for the ratio of determinants for operators of the type (3.10) is [4] 

detL exp($iebdt trPi(t)P;'(t))det(M + NY(b)) 
d e t i  exp(fiabdt trPl(t)P,'(t))det(M +N?(b)) 

(4.6) 

For this result to be applicable, the matrices Pl(t) and P, ( t ) ,  and also P2(t) and h) 
need not be equal, however the matrix Po@), multiplying the second derivative, must be 
the same for both operators. In most applications L will be normalized by a i which has 
a different, and simpler, matrix Pz, but is otherwise the same. In these situations PI = PI, 
the exponential factors in (4.6) cancel out, and the simple formula given by (2.5) holds 
(except, of course, that M, N and Y(b) are now 2r x 2r, not 2 x 2, matrices). We also note 
that, although the formula seems to be asymmetric with respect to the two points a and b, 
one could just as well define a matrix v(t) by 

_-  - 

.. 

(4.7) 

so.that H(u) = v(a)H(b). Then det(M + NY(b)) = det(N f Mv(a)). Therefore, alternative 
formulae to (2.5) and (4.6) exist, with M and N interchanged and Y(b) replaced by v(a).  

All of the formalism discussed So far in this section also applies to the problem with 
regularized boundary conditions-the only difference is that M and N are replaced by M") 
and N") respectively. We are now in a position to summarize the whole procedure. 

(i) Modify the boundary conditions of the original problem by a small amount ( E ) ,  so 
that yi(t) is no longer a zero mode. Let yf'(t) be the eigenfunction of the new problem 
with an eigenvalue A@) which tends to zero as t + 0. Express the modified boundary 
conditions in the form (4.1) so that they are characterized by two matrices M(') and N"). 

(ii) Calculate Y(b) = H(b)H-'(a), where H(t) is given by (4.4). 
(iii) Calculate det(M(€) + N@)Y(b)). 
(iv) Calculate A(f) from (3.8). 
(v) Hence determine 

det(M(f) + N@)Y(b)) 
lim 
6-0 

(vi) Calculate the denominator factor det(M + NP(6)). 
(vii) The ratio of the results of the last two steps gives det'L/deti. 
We will now study various specific examples where this procedure is applied. 

5. Specific examples 

(4.8) 

The algorithm given at the end of the last section gives a method for determining the 
ratio det' L/ det i. In this section'we will give explicit results for a few examples with 
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commonly met boundary conditions and also discuss one example in some detail to show 
how the method we have developed works in practice. We will only give results for the 
quantity given by (4.8). since the final result is found by normalizing this by det i, which 
can be found from the formulae given in, for example, Forman's paper [41. 

For simplicity we only consider the single component (r = 1) case where the operator 
has the form (2.1), for a variety of boundary conditions. 

(a) With the boundary conditions Au(u) + Bli(u) = 0; Cu(b) + Dic(b) = 0, 

A J McKune and M B Turlie 

If all four constants A ,  B ,  C, D are non-zero it is easy to see that all four expressions are 
equivalent. Similarly, if only three of the constants are non-zero, then the two applicable 
expressions are equivalent. If only two constants are non-zero, one involved in the boundary 
condition at U and the other at b, then only one of the above applies. The simple example 
given in section 2 falls into this class:  the boundary conditions there correspond to A = 1, 
E = 0, C = 1, D = 0, and in this case (5.1) reduces to (2.13). 

@) With periodic boundary conditions U@) = u(b); i ( a )  = li(b), 

where det H(u) = 9Z(a )y~(u )  - g1(u)y~(u) is the Wronskian. 
(c) With anti-periodic boundary conditions u(a) = -u(b); i(u) = - u s ) ,  

-=- det' L Ydb)  + M a )  
( Y I ~ Y I )  y 1 ( 4  detH(a)' 

(5.2) 

(5.3) 

As an example of the application of these results, we use one of the most well known 
situations where instantons exist: imaginary time quantum mechanics with a potential 
V ( x )  = ;xZ - 4x4 [6]. As shown in the appendix, this problem leads one to consider 
operators of the form 

dZ 
L = -z + 1 -3pzdnz(ulm) (5.4) 

where dn is an elliptic function [lo], U = p(r - to)/v? and = 2(1 - m)/(2 - m). The 
constants 20 and m originate from the integration of the second-order ordinary differential 
equation which is satisfied by the instanton. The parameter to reflects the breaking of the 
time-translational invariance of the original theory and m is related to the energy of the 
classical particle in the mechanical analogy. The spectral properties of the system can be 
studied by imposing periodic boundarfconditions on the path integral [Ill,  which dictates 
that we use (5.2) to find the required functional determinant. A straightforward calculation, 
outlined in the appendix, yields 

det'L 2(2 - m)'/2 [ K(m) 
( Y l l Y l )  m2 2 - m  2(1-m) 
-=- ~~ -I (5.5) 

where K(m) and E(m) are the complete elliptic integrals of the first and second kind, 
respectively. 

This result simplifies considerably in the limit where the energy of the particle in the 
mechanical energy is zero and consequently the period of the instanton, T, becomes infinite. 
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In the appendix it is shown that the asymptotic forms of ( 5 . 3 ,  det(M + N?(b)) and ( y ,  In), 
for T large are, respectively, er/16, -e' and 3. Combining all of these results gives 

1 - -- det' L 
lim - - 

T - m  d e t i  ~ 12' 

This is in agreement with previous calculations (e.g. equation (29) of [6]). It also 
illustrates the extra complication that may occur if the range (a. b) is infinite. In these 
cases the numerator (4.8) and the denominator det(M + N?(b)) may separately diverge as 
T (b - a )  + CO. One can avoid these divergences in various ways, but the most obvious 
way to proceed in these cases is to use T as.a regulator and to perform all calculations 
with T large, but finite, cancelling out the potential divergences between numerator and 
denominator before taking the T + CO limit. 

6. Conclusions 

In this paper we have developed a simple and effective way of regularizing operators 
which have zero modes. The method allows the functional determinants for these kinds 
of operators, with the zero modes extracted, to be calculated. The main advantage of 
the method, and the reason for its power, is that it leaves much of the structure of the 
unregularized problem intact. This means that much of the formalism originally developed 
in this case can be taken over with very little change. The approach which we have adopted 
has not emphasized rigor; it would be very interesting to put this work on a rigorous footing. 
In particular, we have not proved that the results are independent of the precise method of 
regularization adopted. Until this is done, the results obtained using our method, especially 
for r > 1, should be treated with caution. On the other hand, we have also kept the number 
of examples of the application of the technique to a minimum, preferring instead to give a 
clear and explicit discussion of the methodology. 

Although we have tried to be quite general, describing most aspects of the formalism 
which may arise in practice, there are, inevitably, situations that have not been covered. 
One is the case where there is more than one zero mode present-an example is the model 
studied in [7]. The procedure in cases such as this is a simple extension of our previous 
discussion: regularizing parameters 61,  €2, . . . are introduced for every broken symmetry, 
and hence for every zero mode. This symmetry may be external (spatial or temporal) or 
internal (global or local). The boundary conditions are then modified along the directions 
of breaking by an amount em, and the prescription given in section 5 followed. 

Our motivation for carrying out this work has been the increasing need to evaluate 
determinants of this kind in many areas of the physical sciences. We hope that the ideas 
presented here are sufficiently straightforward and easily implemented so that they will find 
wide application. 
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Appendix 

In this appendix we give details of the calculation of the functional determinant of (5.4). 
The motivation for studying an operator of this type is that it arises in the investigation of 
fluctuations about the instanton in one-dimensional quantum mechanics with the potential 
V ( x )  = 1.’- ix ‘  [6]. The instanton satisfies the equation -2 + V’(x)  = 0, which may be 
integrated once to give ;x2 - V ( x )  = E ,  where E is a constant. Solutions to this equation 
are those of a classical particle of unit mass and energy E moving in the potential - V ( x ) .  
Bounded motion is allowed for E < 0, corresponding to the existence of real instantons. 

Let the values of x at which the particle in this mechanical analogy has zero velocity be 
denoted by a and @ (0 < a  < p ) .  Then -V(a) = - V ( p )  = E which implies a’ +p2  = 2 
and E = -ryZ,@/4. The once integrated equation of motion now reads 

A J McKane and M B Tarlie 

1 - _- dx - - t o )  

where to is the time at which the particle was at x = p .  This may be integrated in term of 
elliptic functions [ 101: 

(-43) 
where U = p(t - t o ) / f i  and m = 1 - (az/p2). The subscript ‘c’ denotes ‘classical‘ and 
simply indicates that thk is a solution of the classical equation of motion 8 S / 8 x ( t )  = 0, 
where S [ x ]  = sub dt [$i2 + V ( x ) ]  is the action. The physical significance of the integration 
constant to is clear: since the particle can start at any x (a & x & ,!3), the time at which 
it reaches p (defined to be to) is arbitrary. The constant m, on the other hand, is directly 
related to the energy of the particle, since E = -(I - m)/2(2 - m)2. An alternative to m, 
which also specifies the energy of the particle, is the period T defined by 

x d t ;  to, m) = pdn(ulm) 

where K(m) is the complete elliptic integral of the first kind [lo]. 
As explained in the main part of the text, we are interested in evaluating the expression 

(5.2), and therefore need to determine the values of the functions y~ and yz at the endpoints a 
and b .  These two functions are solutions of the homogeneous differential equation Lh = 0, 
where 

Using the explicit form for x, given by (A3) we obtain (5.4). But two independent solutions 
of Lh = 0 can be found by differentiating xc with respect to to and m [12], so we define 
YI and YZ by 
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It is a s~aightforward exercise in elliptic functions to find from (A3) that 

mS2 
J5 y,(t; to, m )  = ---sn(ulm)cn(ulm) 

W O )  

One can now check using (A5) that y1 (a) = yl(b) and that jl(a) = 31 (b) for any initial 
and final times satisfying b - a = T .  Therefore, since y1 is  a 'solution of Lh = 0 satisfying 
the correct boundary conditions, it is the zero mode for this problem, as expected. 

pl (t; to, m) = -dn(ulm)(cn2(ulm) mB3 - sn2(ulm)]. 
2 

A slightly longer calculation gives 

dS 
dm y&; to, m) = -dn(ulm) - 

psn2(u Im)dn(u Im) 
2(1 - m) 

- 

where E(ulm) is the elliptic integral of the second kind. Using the periodicity of the elliptic 
functions ~. 

since p2 

Choosing t = to, which implies U = 0 and SO yi (to) = 0, 

2(2 - m)-'. Here E(m) is the complete elliptic integral of the second kind. 
The Wronskian det H ( t )  is a constant, and so can be calculated for any convenient t .  

det Hft) = yz(to)yt ( to)  - Y1 (to)yz(to) 

m 
(2  - 

- -  - 

Substituting (A12) and (A13) into (5.2), and taking into account the extra minus sign which 
comes about because the operator (5.4) is minus the definition of operators as given in the 
text, gives (5.5). 

Following the discussion of the most natural form for i given in section 2, we take 
it to be the second functional derivative of the action for the harmonic oscillator with the 
potential Q ( x )  = $9. Then 

I d2 
L =  --+ 1. 

dt2 

Choosing A ( t )  = e' - and &(t )  = e-' to be the two independent solutions of the 
homogeneous equation Lh = 0, 

1 cosh(b -a) sinh(b - a )  
sinh(b - a )  cosh(b - a)  ?(b) = 



6942 

Using the same periodic boundary conditions which gave (5.2), 

det(M + N?(b)) = 2 - qI1(b)  - ?a(b) 

A J McKane and M B Tarlie 

= 2( 1 - cosh T )  (A161 
= -4sinhz([2 - m]’”K(m)).  (Al7) 

Dividing (5.5) by (A17) gives the required expression for 

As a check on the results let us look at the limit E -+ 0-, i.e. m + 1 or T + W. In 
this case K(m)  - f In(1- m)* which from (A51 gives m - 1 - 16e-T. Using E(m) -+ 1 
as m + 1 ,  we have 

Since from (A16), d e t i  N -er as T -+ 00, 

The sign is the expected one: the zero mode which has been extracted, y ~ ,  has a single 
node, which leads us to deduce that L has only one eigenfunction with a negative eigenvalue: 
all the other eigenvalues are non-negative. The signs of (A17) and (A19) are not those that 
we might naively expect, but these signs have no meaning separately-both the magnitude 
and sign of these terms can be changed at will by the replacement M + AM, N + AN, 
where A is any real number. 

The ratio (AZO) agrees with the caldation of 161. To see this we note that CY -+ 0, ,9 -+ 
4 as m + 1, hence the instanton becomes 

xc(t ;  to, m = I) = fis+ch(t  - to) (A21) 
3 y~ ( t ;  to, m = 1) = &sech(t - to)  tanh(f - to) (A221 
+ ;L~~(Y~IY~) = !. (A23 

Combining (AZO) and (A23) gives (54, as required. 
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